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Abstract

This paper describes an approximation to the lower incomplete gamma function γl (a,x)
which has been obtained by nonlinear curve fitting. It comprises a fixed number of
terms and yields moderate accuracy (the absolute approximation error of the corre-
sponding normalized incomplete gamma function P is smaller than 0.02 in the range5

0.9≤ a≤ 45 and x ≥ 0). Monotonicity and asymptotic behaviour of the original incom-
plete gamma function is preserved.

While providing a slight to moderate performance gain on scalar machines (depend-
ing on whether a stays the same for subsequent function evaluations or not) compared
to established and more accurate methods based on series- or continued fraction ex-10

pansions with a variable number of terms, a big advantage over these more accurate
methods is the applicability on vector CPUs. Here the fixed number of terms enables
proper and efficient vectorization. The fixed number of terms might be also beneficial
on massively parallel machines to avoid load imbalances, caused by a possibly vastly
different number of terms in series expansions to reach convergence at different grid15

points. For many cloud microphysical applications, the provided moderate accuracy
should be enough. However, on scalar machines and if a is the same for subsequent
function evaluations, the most efficient method to evaluate incomplete gamma func-
tions is perhaps interpolation of pre-computed equidistant lookup tables.

1 Introduction20

In cloud physics (and also in radar meteorology), it is common practice to use so-
called gamma-distributions or generalized gamma distributions (Deirmendjian, 1975)
to describe particle size distributions (PSD) of hydrometeors, either to fit observed dis-
tributions (Willis, 1984; Chandrasekar and Bringi, 1987) or to base parametrizations of
cloud microphysical processes on it (e.g., Milbrandt and Yau, 2005; Seifert and Beheng,25

2006). As will be outlined below, this ansatz may lead to the necessity to compute or-
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dinary and incomplete gamma functions. Particularly the incomplete gamma function
poses certain practical computation problems in the context of cloud microphysical
parametrizations used on supercomputers, which up to now hinders developers to ap-
ply parametrization equations involving this function. These problems can be alleviated
by using a new approximation of this function that is introduced in Sect. 2 of this paper.5

With regard to cloud- and precipitation particles, let y represent either the sphere
volume equivalent diameter D or the particle mass m. Then, the distribution function
f (r ,t;y) describes the number of particles per volume at a specific location r at time t
having mass/diameter in the interval [y,y+dy ]. Dropping the r - and t-dependence for
simplicity, f (y) is said to be distributed according to a generalized gamma-distribution10

if it obeys

f (y) = N0 yµ exp
(
−λyν) (1)

with the four parameters N0, µ, ν and λ. If ν= 1, Eq. (1) reduces to “the” gamma-
distribution.

Note that if the widely used assumption m ∼ Db with b > 0 (e.g., Locatelli and15

Hobbs, 1974, and many others thereafter) holds (most simple case: water spheres
with m∼D3), the generalized gamma distribution is invariant under the transformation
between the diameter- and the mass-representation; only the values of the parameters
are different.

The parameters for Eq. (1) are not necessarily independent in natural precipitation.20

For example, in case of rain drops there has been observed some degree of correlation
(Testud et al., 2001; Illingworth and Blackman, 2002).

Often, cloud microphysics parametrizations require the computation of (or are – in
case of “bulk” parametrizations – based entirely on) moments of the PSD functions,
leading, in case of infinite moments, to the ordinary gamma function, which is defined25
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as

Γ(a) =

∞∫
0

e−t ta−1dt with a>0. (2)

For example, the mass content L, which is of primary importance, is the first moment
of the distribution with respect to the mass representation. Generally the moments M (i )

are defined as5

M (i ) =

∞∫
0

y i f (y)dy =

∞∫
0

N0y
i+µe−λyν

dy =
N0 Γ

(
i+µ+1

ν

)
ν λ

i+µ+1
ν

, (3)

hence the name “generalized gamma-distribution” for f (y). Such infinite moments, also
with non-integer i , enter state-of-the-art bulk cloud microphysical parametrizations in
many ways, e.g., in the computation of collision rates, deposition/evaporation rates and
so on, which is extensively described in textbooks (e.g., Pruppacher and Klett, 1997)10

or in the relevant literature (e.g., Lin et al., 1983; Seifert and Beheng, 2006; to name
just a few).

If, however, one wishes to parametrize processes with a spectral cut-off, e.g., con-
version of particles above a certain size/mass threshold to another species by a certain
process (e.g., “wet growth”, or collisions of ice particles with drops where the “outcome”15

depends on certain size ranges of the ice particles and the drops as proposed by Far-
ley et al., 1989), this would require the computation of incomplete gamma functions.
The lower incomplete gamma function is defined as

γl (a,x) =

x∫
0

e−t ta−1dt with a>0. (4)
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For example, consider the transformation of intermediate-dense graupel particles to
high-density hail particles in conditions of wet growth, which is important for hail forma-
tion. That is, if graupel particles are in an environment of high content of supercooled
liquid water drops (high riming rate), then particles larger than a certain size/mass mwg
cannot entirely freeze the collected supercooled water, because the latent heat of fu-5

sion cannot be transported away from the particle fast enough (e.g., Young, 1993). The
non-frozen water might get incorporated into the porous ice skeleton of the graupel and
might refreeze later, leading to an increase in bulk density (“hail”). Following Ziegler
(1985), the corresponding loss of Lg (graupel) to Lh (hail) might be simply parameter-
ized by10

∂Lg

∂t

∣∣∣∣∣
wetgr

= −
∂Lh

∂t

∣∣∣∣
wetgr

= − 1
∆t

∞∫
mwg

mg f (mg)dmg = −
N0,g γu

(µg+2
νg

,λgm
νg

wg

)
νg λ

µg+2
νg

g ∆t

(5)

where the index g denotes graupel and ∆t the numerical time step. On the right-
hand side, now the upper incomplete gamma function γu(a,x)=Γ(a)−γl (a,x) appears.
Values of mwg are usually in a range equivalent to a diameter & 1 mm, µg is typically
between −0.5 and 1, and νg ≈ 1/3. Both N0,g and λg are > 0 but quite variable, so that15

the corresponding value of x in Eq. (4) might take on arbitrary values >0.
Dividing Eq. (4) by the (ordinary) gamma Function Γ(a)= γl (a,∞) leads to the nor-

malized function

P (a,x) =
γl (a,x)

Γ(a)
(6)

with values monotoneously increasing from 0 for x= 0 to 1 for x→∞. The majority of20

the increase from 0 to 1 occurs at values of x around a with a “band width” of about
√
a

(see black curves in Fig. 1, in anticipation of the following).
Taking the complement 1−P (a,x) leads to the so-called upper normalized incom-

plete gamma function Q(a,x), which, upon multiplication with Γ(a), gives the integral in
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Eq. (4) but with lower limit x and upper limit ∞, which is denoted by γu(a,x). Comput-
ing any of γl (a,x), γu(a,x), P (a,x) or Q(a,x) will lead to any of the other functions by
simple transformations.

Complete and incomplete gamma functions are well-known and treated extensively
in the mathematical literature, and there are various ways to compute these functions5

in practice. To start with Γ(a), along with the well-known recurrence relations, Press
et al. (1993) devise a very efficient and very accurate approximation for a> 0, which
is sufficient for cloud microphysical applications, and which has been originally derived
by Lanczos (1964). To compute incomplete gamma functions, a widely used method
devised again by Press et al. (1993) uses a series expansion of γl (a,x) or a continued10

fraction expansion of γu(a,x), depending on whether x is larger or smaller than a+1.
These expansions are summed up to a certain number of terms until convergence
is reached. The required number of terms depends on a and x and on the desired
numerical accuracy.

While this is a very accurate method, the numerical burden is comparatively high15

within the framework of cloud models and is hard to predict because of the variable
number of terms required to reach the desired accuracy, and, on vector machines, this
method leads to vectorization problems, which might drastically lower the computing
performance. We believe that, among other reasons, these practical problems and the
supposedly high computational costs with regard to the low computing performance20

up to now prevented many cloud physicists from extensively using parametrizations
which involve incomplete gamma functions, such as Eq. (5) . In some cases where
incomplete gamma functions have been used, simple analytical approximations very
special values of a were employed, as in, e.g., Cotton et al. (1986). Or, as in Farley
et al. (1989), the finite integrals otherwise resulting in incomplete gamma functions25

have been calculated numerically (which is perhaps even more costly than Press’s
method!).

However, because for many cloud microphysical process parametrizations in the
context of bulk (moment) approaches the parameter a is fixed during subsequent func-
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tion evaluations, the most efficient way in this case is perhaps interpolation from pre-
computed equidistant lookup tables with respect to x at fixed a. This method has been
used, e.g., by Harringon et al. (1995) and Walko et al. (1995). Equidistant tables are
particularly efficient to evaluate, because the indices of the neighbouring values xi and
xi+1 in the table, required to obtain the interpolated value of γl at a point x, can be5

explicitly computed from x, the starting point x1 of the table and the table increment
∆x,

i = INT
(
x−x1

∆x

)
+ 1. (7)

This is much more efficient and predictable compared to a non-equidistant table, where
a search loop with a nested if-clause is necessary to find i . Further efficiency is gained10

by pre-computing the constant 1/∆x, so that the costly division is replaced by a cheap
multiplication. If linear interpolation between neighbouring table values is used (accu-
racy might be gained from decreasing ∆x), so that

γl (x) ≈ γl ,i +
γl ,i+1−γl ,i

∆x
(x−xi ) , (8)

then altogether only one integer rounding operation and a few additions and multiplica-15

tions have to be performed per γl evaluation.
The necessary span of the table with respect to x at a certain value of a may be

taken from 0 to the value x995 where P (a,x995)= 0.995.x995 as a function of a may be
estimated from the approximative formula

x995(a) = g1

(
1−exp

(
g2a

g3
))

+ g4a (9)20

g1 = 36.63 g2 = −0.1195

g3 = 0.3393 g4 = 1.156

which has been obtained by nonlinear curve fitting and which is depicted in Fig. 2. At
x >x995, P (a,x)≈1 respectively γl (a,x)≈Γ(a).25
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Unfortunately such lookup tables also lead to vectorization problems because of
memory bank conflicts, in case of many parallel vector tasks having to access the
same table values at the same time. On such types of architectures, it is desirable
to have an approximation formula at hand with a fixed number of mathematical terms,
regardless of a and x. At the same time, for many applications a reduced accuracy may5

be acceptable, e.g., approximation errors for P within 0.01 absolute and/or 1% relative.
Lanczos’s very accurate approximation to Γ(a) does already fulfill the requirement of a
fixed number of terms. The purpose of this paper is to develop such an approximation
also for γl (a,x), although at a reduced accuracy.

2 Approximation of the lower incomplete gamma function10

We seek an approximation by means of nonlinear curve fitting, because this leads to
the desired fixed number of terms, as opposed to relying on the convergence of series
expansions. To motivate a regression ansatz, series expansions are however useful.
A series expansion of γl (a,x) can be obtained by plugging the Taylor series of the
exponential function exp(−t) into Eq. (4) and integrating each term separately, which15

leads to (Abramowitz and Stegun, 1970)

γl (a,x) = xa
∞∑
i=0

(−1)i
xi

i !(i +a)
. (10)

A different well-known representation (e.g., Press et al., 1993) is

γl (a,x) = exp(−x)xa
∞∑
i=0

xi

(a+ i )(a+ i −1)···a
, (11)

which can be obtained from Eq. (10) after tedious manipulation by separating the20

series representation of exp(−x) by means of the Cauchy-product and solving for the
series coefficients by equating the pre-factors for each individual power of x.
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It turns out that for x � a the first two terms in Eq. (11) are sufficient to give a
reasonable approximation. For larger x, an ever increasing number of terms is nec-
essary. On the other hand, for x →∞, P (a,x) approaches 1 seemingly similar to
something like 1−c−x

4 , with some positive number c4. The former approximation is
asymtotically correct for x→ 0, the latter for x→∞. Therefore, a 4-parametric ansatz5

γ̃l (a,x;c1,c2,c3,c4) is constructed which blends the former function (slightly modified
by the the fitting parameter c1) into the latter:

γl (a,x) ≈ γ̃l (a,x)

= exp(−x)xa

(
1
a
+

c1x

a(a+1)
+

(c1x)2

a(a+1)(a+2)

)
(1−W (x)) + Γ(a)W (x)

(
1−c−x

4

)
(12)

W (x) =
1
2
+

1
2

tanh(c2 (x−c3)) . (13)10

For many fixed values of a ∈ [0.1,30], nonlinear curve fitting by the Levenberg-
Marquardt-method with respect to x ∈ [0,x995(a)] leads to a large number of coefficient
sets c1 to c4, each coefficient being a function of a. γ̃l (a,x) denotes the resulting fit,
P̃ (a,x)= γ̃l (a,x)/Γ(a) and Q̃= 1− P̃ . The results of such curve fits have been found15

very pleasing, as the absolute approximation errors of the resulting normalized func-
tions P and Q are generally less than 0.01 over the employed a-x-domain. This cor-
responds to a relative error |(P̃ −P )/P |< 1% for x ' a and |(Q̃−Q)/Q|< 1% for x . a.
The relative errors might be larger when P (a,x) and Q(a,x) approach 0, but relative
errors are not meaningful in that case. The fits show the same asymptotic behaviour20

as the original function and are found to always increase monotonically with increasing
x, which is essential to be of practical use.
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As a last step, c1 to c4 are approximated as functions of a, again by nonlinear curve
fitting. The results are

c1(a) ≈ ĉ1(a) = 1 + p1a + p2a
2 + p3a

3 + p4a
4 + p5 (exp(−p6a)−1)

c2(a) ≈ ĉ2(a) = q1 +
q2

a
+

q3

a2
+

q4

a3

c3(a) ≈ ĉ3(a) = r1 + r2a + r3a
2 + r4a

3

c4(a) ≈ ĉ4(a) = s1 +
s2

a
+

s3

a2
+

s4

a3
+

s5

a4
.

(14)

The values for the parameters p1 . . .p6, q1 . . .q4, r1 . . . r4 and s1 . . . s5 are given in
Table 1. Replacing in Eq. (12) c1 . . .c4 by ĉ1 . . . ĉ4 leads to the final approximation5

γ̂l (a,x). Figure 1 shows examples of the normalized P̂ (a,x)= γ̂l (a,x)/Γ(a) (grey lines)
as function of x for some fixed values of a in comparison to the original function P (a,x)
(black lines), demonstrating a reasonably good agreement.

However, Fig. 3 shows the coefficients c1 to c4 as obtained by the curve fits at
constant a (grey stars) along with the corresponding approximations ĉ1 . . . ĉ4 given by10

Eq. (14) (black lines), and some difficulties at the lower range of a-values (a<0.9) are
apparent. Therefore, γ̂l (a,x) (resp. P̂ (a,x)) with the set of coefficients in Table 1 is not
likely to be a good approximation to γl (a,x) (resp. P (a,x)) for a < 0.9, a fact that is
clearly demonstrated in Fig. 4, which depicts the relative and absolute errors (P̂ −P )/P
(left plate) and P̂ −P (right plate) as function of a and x. In these figures, x has been15

scaled by a+1 since P varies mostly in the region of x around a+1.
Where do these difficulties for small values of a come from? To understand this, it is

instructive to look at the analytical formulas for γl (a,x) in case of a beeing an integer
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m, starting with m=1,

γl (1,x) = 1 − e−x (15)

γl (2,x) = 1 − (x+1)e−x (16)

γl (3,x) = 2 − (x2+2x+2)e−x (17)

γl (4,x) = 6 − (x3+3x2+6x+6)e−x (18)5

...

γl (m,x) =
[
−tm−1e−t

]x
0
+ (m−1)

x∫
0

tm−2e−tdt

= −xm−1e−x + (m−1)γl (m−1,x)

= Γ(m) −
(

m−1∑
i=0

d i

dxi

(
xm−1

) )
e−x . (19)

10

The last finite sum representation has been deduced from the representations at m=
1, 2, . . . and can be proved by a) taking the first derivative with respect to x, which yields
xm−1e−x as it should, and b) by the fact that the highest derivative (last element in the
sum) equals (m−1)! (which is Γ(m)), so that for x = 0 the correct value γl (m,0) = 0
is obtained. For small integer values of m, this representation is an efficient way to15

evaluate γl .
Now, concerning the difficulties for small values of a, γl for a= 1 (Eq. (15) ) is a simple

exponential function which matches the ansatz (12) only in the limits c2 →∞, c3 = 0
and c4 =e. As a→ 1, the coefficients c2 to c4 go towards these values, as is shown in
Fig. 3, with the singularity of c2 at a=1. Of course at a=1 the fitting algorithm leads to20

a “compromise”-solution with finite c2; otherwise, a kind of branch-cut of the coefficients
around a= 1 can be observed. For larger values of a, the analytical formulation of γl
gets more complicated (for a being an integer m, more and more terms get involved
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into the finite sum in Eq. (19) as m increases) and is more likely to be well describable
by the ansatz (12).

For most cloud microphysical applications, the branch for a > 1 seems to be the
important one. Therefore, the approximations (14) are developed to represent mainly
that branch. By altering the regression functions to, e.g., rational functions, it would5

perhaps be possible to find approximations which encompass both branches.
It turns out, however, that the approximations (14) are applicable for a-values down to

0.9, because for a≥ 0.9, the absolute error |P̂ −P | given in Fig. 4 (right figure) remains
below 0.02 everywhere, and the relative error |(P̂ −P )/P | (left figure) is also quite small
except when P gets close to 0. But here, the relative error is not a good error measure10

anyways. Beyond the range of a-values for which P̂ has been fitted, it turns out that
the approximation error remains within the same small limits up to a= 45. Above that,
P̂ is not a good approximation.

A further condition for P̂ to be of practical use is that this function increases mono-
tonically with respect to increasing x at fixed a, as does the original function P . One15

possibility to check monotonicity is to look at the sign of the partial derivative of P̂ with
respect to x. Figure 5 shows ∂P̂ (a,x)/∂x=1/Γ(a) ∂γ̂l (a,x)/∂x (the formula is omitted
for brevity) as function of a and x, and it is apparent that values are > 0 everywhere,
which indicates the desired monotonicity.

Concerning the efficiency of the proposed approximation, it has been found that, on20

our scalar linux desktop computer using the gfortran compiler and high optimization, it
is faster by a moderate factor 4 on average compared to the efficient method of Press
et al. (1993) mentioned in the introduction. Here, the speed-up depends on a and x,
that is, on the number of required terms and the desired accuracy in Press’s method.
The latter has not been changed from its original values.25

A more impressive speed-up is gained, however, in the case where subsequent
evaluations at the same value of a are needed, as is the case in cloud physics: many
coefficients of the terms in the proposed approximation only depend on a and may
be pre-computed once, so that we were able to obtain a speed-up factor of about 15
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on average. But the biggest advantage is perhaps on vector CPUs, where the fixed
number of terms makes vectorization easy for programmers and compilers. Also, there
might be advantages on massively parallel machines in that the method avoids load
imbalances otherwise caused by different numbers of terms in series expansions to
reach convergence at different grid points.5

Further experiments, in which the hyperbolic tangent in Eq. (12) has been replaced
by the simple but accurate and continuously differentiable rational approximation

tanh(x) ≈


−1 x≤−ct

3

9c2
t x+27x3

c3
t +27ctx2

−ct
3 <x < ct

3

1 x≥ ct
3

ct = 9.37532 (20)

did not increase efficiency on our desktop computer. This is presumably because the
necessary numerical division operation is very costly and because the tanh-function10

is already implemented in a very efficient way in state-of-the-art compilers. Neverthe-
less, if on a specific computer system the computation of tanh should cause efficiency
problems, Eq. (20) might be tried instead. Observe that changing the value for ct
would only rescale the function along the x-axis but preserve the differentiability and
the ”outer” function values −1 and 1, a fact that renders Eq. (20) a quite general15

blending function.

3 Summary

This paper describes an approximation to the lower incomplete gamma function which
has been obtained by nonlinear curve fitting. It comprises a fixed number of terms and
yields moderate accuracy (absolute approximation error of P is <0.02 in the range 0.9≤20

a≤ 45 and x ≥ 0), which should be enough for most cloud microphysical applications,
but may be problematic for other applications. The proposed approximation P̂ consists
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of Eq. (12) in combination with Eq. (14) and coefficients given in Table 1. Monotonicity
and asymptotic behaviour of the original incomplete gamma functions are preserved,
which is important.

The method is generally only slightly more efficient in terms of the required number
of floating point operations than the more accurate method of Press et al. (1993), but5

if subsequent evaluations at a certain fixed value of a are sought (which is often the
case in cloud microphysics), then a significant performance increase can be obtained
by pre-computing certain terms and coefficients which only depend on a. On scalar
architectures, however, the most efficient method to evaluate incomplete gamma func-
tions at constant a is certainly interpolation of equidistant lookup tables as described10

in the introduction.
A great advantage of the proposed approximation P̂ is its applicability on vector

CPUs, because the formula with its fixed number of terms is well suited for vectoriza-
tion, as opposed to, e.g., Press’s method or other more accurate algorithms based on
series- or continued-fraction representations.15

With regard to massively parallel machines (where the use of equidistant lookup
tables might pose memory issues), the fixed number of terms might be also beneficial
to avoid load imbalances caused by different numbers of terms in series expansions to
reach convergence at different grid points.

Acknowledgements. This work has been inspired by discussions with Axel Seifert (German20

Weather Service), who also suggested some improvements to the manuscript.
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Table 1. Coefficients pi , qi , ri , and si for the approximation functions ĉ1(a) . . . ĉ4(a) in Eq. (14) .

i pi qi ri si

1 9.4368392235E-03 1.1464706419E-01 0.0 1.0356711153E+00
2 −1.0782666481E-04 2.6963429121E+00 1.1428716184E+00 2.3423452308E+00
3 −5.8969657295E-06 −2.9647038257E+00 −6.6981186438E-03 −3.6174503174E-01
4 2.8939523781E-07 2.1080724954E+00 1.0480765092E-04 −3.1376557650E+00
5 1.0043326298E-01 – – 2.9092306039E+00
6 5.5637848465E-01 – – –
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Fig. 1. P (a,x) (black lines) for some values of a as function of x. Grey lines: proposed approximation
Eq. (12) with coefficients given by Eq. (14) and Table 1.
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Fig. 1. P (a,x) (black lines) for some values of a as function of x. Grey lines: proposed
approximation Eq. (12) with coefficients given by Eq. (14) and Table 1.
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Fig. 2. x995 as function of a. x995 is defined by P (a,x995) = 0.995.
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Fig. 2. x995 as function of a. x995 is defined by P (a,x995)=0.995.
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Fig. 3. Numerical values (grey stars) of the regression coefficients c1 through c4 in Eq. (12) as derived
by nonlinear regression for fixed values of a. Black lines: nonlinear regression functions to each of c1
through c4 as functions of a after ansatz (14) and the coefficients from Table 1.

17

Fig. 3. Numerical values (grey stars) of the regression coefficients c1 through c4 in Eq. (12) as
derived by nonlinear regression for fixed values of a. Black lines: nonlinear regression functions
to each of c1 through c4 as functions of a after ansatz (14) and the coefficients from Table 1.
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Fig. 4. Relative (left) and absolute (right) error of the proposed approximation P̂ (a,x) = γ̂(a,x)/Γ(a)
as function of a and x/(a+1). The parameter x has been scaled by a+1 because the main variation of
P (a,x) with x takes place at x-values around a+1. The vertical grey lines at a= 0.9 indicate the lower
boundary with respect to a of the (a,x)-range where errors are acceptable.
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Fig. 4. Relative (left) and absolute (right) error of the proposed approximation P̂ (a,x) =
γ̂(a,x)/Γ(a) as function of a and x/(a+1). The parameter x has been scaled by a+1 be-
cause the main variation of P (a,x) with x takes place at x-values around a+1. The vertical
grey lines at a= 0.9 indicate the lower boundary with respect to a of the (a,x)-range where
errors are acceptable.
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grey line as in Fig. 4.
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Fig. 5. ∂P̂ (a,x)/∂x = 1/Γ(a) ∂γ̂l (a,x)/∂x as function of a and x/(a+1). Same scaling of x
and same grey line as in Fig. 4.

472

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/3/451/2010/gmdd-3-451-2010-print.pdf
http://www.geosci-model-dev-discuss.net/3/451/2010/gmdd-3-451-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/

